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1 Summary of findings

This note explores techniques for estimating econometric models of city population
growth rates and developing forecasts of these rates. To illustrate, we make use of
the most recent available version of the United Nations Population Division’s cities
database, and link its city growth series to estimates and projections of total fertility
rates and child mortality rates. Limiting attention to cities in developing countries,
we proceed to estimate a variety of random-effect and fixed-effect models of city
growth and develop growth forecasts.

The empirical results we obtain prove to be strongly supportive of this ap-
proach. This is especially true of the fixed-effect city growth models, which in-
troduce a great number of city-specific dummy variables and yet display large and
statistically significant total fertility rate and city size coefficients. The city growth
rate forecasts generated by these econometric models are demographically reason-
able, suggesting that over the span of the forecast from 2000 to 2045, median city
growth rates in the developing world will fall from about 2.5 percent to 1.6 percent.
But we would hasten to add that these are preliminary results, based on city size
and growth data that are undergoing substantial revision.

Our city growth forecasts are consistent with, and indeed largely based upon,
the United Nations forecasts for fertility and mortality rate decline at the national
level. Yet the United Nations has never previously linked its fertility and mortality
projections to its city growth rate projections. It has developed the city projections
autonomously, using methods that the UN acknowledges are simplistic and in need
of revision. Our approach thus unites two of the large programs of population
projection in which the UN engages, and does so in a way that permits the city
growth forecasts to be expressed in probabilistic terms, as strongly recommended
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by the U.S. National Research Council’s extensive review of population projection
methods (Panel on Population Projections, 2000).

As just mentioned, these are preliminary results. Much remains to be done to
assess the nature and extent of measurement error in the basic city population data
series. Until the city data have been thoroughly cleaned and validated, no one can
make definitive pronouncements about which forecasting methods yield the best
results. In addition, further work is in order on the explanatory variables that enter
these models. The results developed in this note are based not on the preferred
urban estimates of the total fertility and child mortality rates, but rather on national
estimates of fertility and mortality. We intend to revisit questions of the robustness
of the city growth estimates and their vulnerability to measurement error when
the cities database has been cleaned, probable errors of measurement have been
uncovered and flagged, and the full complement of urban fertility and mortality
data have been made ready to be linked to the city growth series. At that point the
rigorous comparison of forecast results from alternative methods can begin.

2 Overview of methods

The basic city growth model is set out as equation (1),

gi,t = α +βTFRt +δqt + vi,t . (1)

In this equation the i subscript denotes a particular city and t is a point in time;
gi,t is the estimated city population growth rate at that time; and the fertility and
mortality components of growth are represented by the total fertility rate TFRt and
qt , the child mortality rate.

At first glance, equation (1) might not appear to provide a useful starting-point
for city growth rate estimation and projection—after all, no observable city-specific
explanatory variables appear on its right-hand side. How, then, could such an
equation possibly supply city-specific growth estimates? To understand our ap-
proach, recall that the United Nations city database provides a short time-series
of growth observations for the cities in the database. When the disturbance term
vi,t of equation (1) is appropriately specified, and econometric techniques for time-
series, cross-sectional data are applied, informative city-specific growth estimates
can be extracted from the equation even in the absence of city-specific explanatory
variables.

Of course, growth models including observed city-specific explanatory vari-
ables will generally be preferred to those without such variables, provided that the
city-specific observables are either fixed over time or can be forecast with rea-
sonable confidence. To show how our approach generalizes to include observed
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city-specific explanatory variables, we will develop below an expanded model of
city growth in which city i’s population size exerts an influence on its growth rate.
As we will demonstrate, the inclusion of city size in the econometric models brings
our growth rate forecasts closer into line with the UN’s current forecasts.

In what follows, we explore three specifications of vi,t , the regression distur-
bance term. The first is a random effects specification in which the disturbance
term is represented as a composite vi,t = ui + εi,t , containing one component, ui,
that is specific to city i and whose value can be estimated as ûi. In this approach, ui

is assumed to be uncorrelated with the other right-hand side explanatory variables
(TFRt and qt). Our second specification is a fixed effect specification in which the
disturbance term also takes the composite form vi,t = ui + εi,t , but in which ui is
allowed to be correlated with other right-hand side variables. As in the random-
effects approach, the value of ui can be estimated (using techniques similar though
not necessarily identical to those applied in the random-effects method). This spec-
ification will prove useful when city-specific endogenous explanatory variables are
introduced in the model.

Our third specification is a random-effects first-order autoregressive specifica-
tion in which the disturbance term again takes the composite form vi,t = ui + εi,t ,
but with εi,t = ρεi,t−1 + wi,t . In this approach, the city-specific growth forecast
for a future period t + s, given data up to period t, involves ûi + ρ̂s · ε̂i,t . In the
simple random-effects and fixed-effects models, city i’s growth rate is forecast to
be relatively high (ûi > 0) or low (ûi < 0) indefinitely, whereas the autoregressive
approach allows a portion of the projected city-specific growth difference to fade
away with time.

The model with lagged city population size as a covariate is specified as in
equation (2),

gi,t = α0 +α1Pi,t−1 +βTFRt +δqt + vi,t . (2)

with Pi,t−1 being the lagged value of city i’s population.1 A random-effects specifi-
cation is not appropriate here, because Pi,t−1 is akin to a lagged dependent variable
and is therefore correlated with the ui component of the disturbance term. Variants
of the fixed-effect estimation strategy are required in this case.

Please note that whereas we hope to employ urban total fertility rates and child
mortality rates in our future analyses of city growth, in this illustrative note we
make use of national total fertility and child mortality rates. Urban fertility and
child mortality rates are available from the World Fertility Surveys, the Demo-
graphic Health Surveys, and numerous other sources. We are in the process of

1The notation conveys the essential features of the model we use, but over-simplifies the situation
that faces us. Annual city population data are not generally available in the UN cities database, and
city population counts are recorded at unequally-spaced intervals.
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assembling these urban rates, critically reviewing them, and linking them to the
city population database. For the purposes of this illustrative note, we will rely
on the national-level fertility and child mortality estimates and forecasts already
available from the Population Division.

3 Overview of the UN cities database

The current version of the UN Population Division cities database supplies popu-
lation counts for over 2500 cities in the developing world. The database includes
records of each city’s population size as reported in a census or another official
estimate, together with the year of the report. In general, a city appears in this
database if it is a capital or if its population has exceeded 100,000 residents.2 In
Africa, there are on average 3.5 records available on the population of each city
in the database; in Asia, there are 3.2 such records; and in Latin America and the
Caribbean, 5.7 records. These records refer to population counts taken as long ago
as the 1940s, in a few instances, and as recently as 2003–04. City populations are
not necessarily recorded at regular intervals even in one country, and the intervals
between measurements vary a good deal across countries. As we will discuss be-
low, the uneven spacing in the time dimension that is a feature of these data makes
it difficult to apply conventional time-series estimation techniques.

For each city, we have converted the available population data into measures
of city growth rates gi,t0 , with growth over the period t0 to t1 defined in continu-
ous terms and estimated as gi,t0 = (lnPi,t1 − lnPi,t0)/(t1 − t0). The conversion from
population counts to growth rates yields some 8,000 observations on city growth.

Figure 1 depicts the distribution of city growth rates for all cities (and time
periods) in the database, and separately for the broad developing regions of Africa,
Asia, and Latin America. The median growth rate recorded here is 3.20 percent and
the mean is 3.76 percent. As the figure shows, there are instances of city population
decline evident in these data as well as cases of rapid growth at rates of 10 percent
and above.

In formulating its urban projections, the UN Population Division has made use
of an equation that forces city growth rates to decline as city size increases. The
empirical basis for this relationship can be seen in Figure 2, represented via box
plots. (These plots indicate the 25th percentile, the median, and the 75th percentile;
the ‘whiskers’ show lower and higher percentiles. To aid in inspection of the central

2Once a city passes this size threshold, the Population Division endeavors to reconstruct its popu-
lation trajectory in earlier years. Hence, the database contains many records of cities with populations
under 100,000. However, these records have not generally been subjected to the critical scrutiny that
the Population Division applies to larger cities.
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tendencies and to reduce visual clutter, the plots omit a handful of lower and upper
growth outliers; these were displayed in Figure 1 above.) As the UN has empha-
sized in its discussion of the method, the relationship between city size and growth
is weak in terms of variance explained but is, nevertheless, highly significant in
statistical terms and sufficiently general to warrant consideration in the forecasts.
In Africa, as the figure shows, the relationship between city size and growth is a bit
irregular, being mainly apparent in the growth rate difference between the smallest
and largest cities of the region. In other regions, however, the relationship appears
to be more robust. The negative association between size and the rate of growth
is evident among the smaller cities (under half a million population) as well as
the larger (3). The growth rate differences depicted in these figures amount to a
few percentage points above and below the median growth rate, and clearly there
is substantial residual variation that cannot be attributed to city size as such—but
there is sufficient regularity in evidence here to justify further examination.3

Substantial differentials emerge when we consider how city growth rates vary
with national total fertility rates (TFRs). As we have noted, this linkage—shown
in Figure 4 for all cities—has not previously been featured in the UN city pro-
jection methods. To judge from our descriptive figures, there is ample reason to
incorporate fertility rates in city growth forecasts. Note in particular that in Latin
America, the TFR–city growth gradient is especially steep. In this region, which
is the most highly urbanized in the developing world, national TFRs are probably
better proxies for urban TFRs than is the case in the other regions. We would ex-
pect that when we are able to link urban fertility data to the cities database, steeper
TFR–city growth gradients will emerge in Africa and Asia as well.

The city growth–child mortality gradient (not shown) is generally positive, ow-
ing (we believe) to the positive association between the total fertility rate and the
child mortality rate. As will be seen in the next section, evidence of the expected
negative association between city growth and mortality emerges when statistical
controls are put in place for the level of the total fertility rate.

3Although we do not pursue the point further in this note, there is a suggestion of heteroskedas-
ticity in the plots of growth rates by city size, with greater variance in growth apparent for smaller
cities.
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4 Estimating city growth rate equations

In what follows we present illustrative estimates of the basic city growth rate mod-
els, using the random-effects and fixed-effects specifications described above. In
each case, the disturbance term vi,t of the regression takes the composite form
vi,t = ui +εi,t . In the random-effects specification, the city-specific component ui is
assumed to be uncorrelated with the right-hand side explanatory variables, whereas
in the fixed-effect specification a correlation between ui and the explanatory vari-
ables is permitted. We also present estimates of the random effects, first-order
autoregressive model in which vi,t = ui + εi,t with εi,t = ρεi,t−1 +wi,t .

Given data to period t, forecasts of city growth rates in period t + s are made
as follows. For the purposes of this note, we will take the United Nations point
forecasts of national total fertility rates and child mortality rates as given. (This
assumption can be relaxed to allow for forecast errors in future fertility and mor-
tality.) Then for city growth in period t + s, we have

g̃i,t+s = α̂ + β̂T FRt+s + δ̂qt+s + ṽi,t+s,

in which the symbol ‘˜’ denotes a forecast value and the symbol ‘ˆ’ denotes an
estimated quantity based on data up to period t. In the simple random-effects and
fixed-effects models, ṽi,t+s = ûi although the way in which ûi is calculated gener-
ally differs between the two methods. In the random-effects autoregressive case,
ṽi,t+s = ûi + ρ̂s · ε̂i,t . The models we describe below were estimated in STATA,
which offers the Baltagi–Wu (1999) routine to estimate random-effects autoregres-
sive models when the data are unequally spaced in the time dimension.

Table 1 presents the basic regression models, with ordinary least squares esti-
mates shown in the first two columns, followed by the simple random-effects and
fixed-effects models. As can be seen, the coefficient on the total fertility rate is
highly significant, with an increase of 1 child in the TFR implying increases in
city growth rates ranging from 0.466 to 0.887 percentage points, depending on the
model. Interestingly, the fixed-effects estimate of the TFR coefficient is the largest
in this set of estimates. The child mortality rate (the variable is coded in terms of
deaths per 1000 children) has a smaller effect on city growth, but the coefficient
attains statistical significance.

Table 2 presents region-specific estimates of the random-effects and fixed-
effects models. The major differences between these estimates and the estimates
based on pooled data are, first, that the child mortality coefficient changes sign in
one region (Africa) and loses statistical significance in another (Latin America).
Second, the coefficient on the total fertility rate is evidently smaller in Africa than
in the other two regions. However, the TFR coefficient is highly significant in all
three regions.
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Table 1: City growth regression models, developing countries, all cities.
(Asymptotic Z-statistics in parentheses.)

Model 2
Model 1 OLS Random Effects Fixed Effects

Total Fertility Rate 0.466 0.602 0.685 0.887
(Z statistic) (26.83) (19.97) (20.34) (17.68)
Child Mortality Rate -0.004 -0.005 -0.007

(-5.53) (-5.54) (-4.49)
Constant 1.878 1.757 1.464 0.802

(24.43) (22.01) (16.54) (7.25)
σu 1.184 1.907

(27.71)
σε 2.667 2.662 2.394 2.381

(107.08)
log-likelihooda -18640 -18624 -18446 -16568
a Likelihood calculation assumes that disturbances are normally distributed.

Table 2: Random and fixed-effect city growth models, by region. (Asymptotic
Z-statistics in parentheses.)

Africa Asia Latin America
RE FE RE FE RE FE

Total Fertility Rate 0.375 0.297 0.646 1.082 0.675 0.944
(Z statistic) (3.89) (2.40) (14.12) (13.63) (9.10) (10.17)
Child Mortality Rate 0.004 0.011 -0.008 -0.014 0.003 -0.006

(1.94) (3.37) (-6.57) (-6.99) (1.29) (-1.87)
Constant 1.519 0.829 1.797 0.773 1.185 0.845

(4.17) (1.66) (15.47) (4.55) (7.89) (5.50)
σu 0.963 2.028 1.060 1.948 1.237 1.694

(6.93) (16.71) (18.73)
σε 2.753 2.756 2.510 2.494 1.963 1.947

(40.88) (77.88) (60.64)
log-likelihooda -2944 -2652 -10111 -9099 -5129 -4605
a Likelihood calculated on the assumption that disturbances are normally dis-

tributed.
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Table 3: Random-effects city growth models with autoregressive distur-
bances. (Asymptotic Z-statistics in parentheses.)

Assumed value of ρ

ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9
Total Fertility Rate 0.682 0.680 0.674 0.661 0.670
(Z statistic) (20.31) (20.10) (19.63) (18.64) (16.30)
Child Mortality Rate -0.005 -0.005 -0.005 -0.005 -0.005

(-5.60) (-5.58) (-5.53) (-5.38) (-4.82)
Constant 1.488 1.500 1.523 1.572 1.536

(16.93) (16.84) (16.66) (16.31) (13.39)
σu 1.138 1.112 1.044 0.794 0.000
σε 2.087 1.942 1.767 1.569 1.375

Table 3 presents estimates of the random-effects autoregressive model. Here
we fix the value of ρ , the autoregressive coefficient of the disturbance term, and
show how the other model coefficients are influenced by its value.4 In this case, the
value chosen for ρ has little apparent effect on the other parameter estimates, leav-
ing virtually unchanged the estimates of the TFR and child mortality coefficients,
and exerting only minor influence on the estimated constant term. Nevertheless,
although the estimates are similar, forecasts based on the random-effects, first-
order autoregressive model would behave differently from forecasts of the simple
random-effects and fixed-effects models. With |ρ| < 1, the forecast of the compos-
ite ṽi,t+s disturbance given data to period t is

ṽi,t+s = ûi +ρ
s · ε̂i,t

in which the estimated ε̂i,t disturbance component for period t exerts a persistent
but gradually waning influence on forecasts of city growth for future periods. The
higher the value of ρ , the larger this effect will be in any given future period. As s
increases, however, the autoregressive effect steadily diminishes in size, leaving ûi

in place as the principal city-specific effect on future growth.
In Figures 6 and 7 we compare the United Nations city growth forecasts (with

an endpoint of 2015) with the forecasts derived from the simple random-effects and

4With unequally-spaced data, it is difficult to obtain credible estimates of ρ without recourse to
special-purpose programming. The routine we have used in STATA calculates an estimate of ρ using
the observations that happen to be one period (that is, one year) apart—such pairs of observations are
rather rare in the cities database. Estimates of ρ for our dataset will require additional programming
routines to be coded in Fortran or Matlab. Also, the last column of the table shows that highly
persistent autoregressive disturbances (produced by high values of ρ) are difficult to distinguish
from fully persistent ui values.
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Figure 5: United Nations city growth rate forecasts to 2015. Median growth rates
shown.
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Figure 6: City growth rate forecasts from the random-effects and fixed-effects re-
gressions, to 2045. Median growth rates shown.
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fixed-effects models of Table 1, which extend to 2045 in keeping with the UN’s
forecasts of total fertility and child mortality rates. The UN forecasts suggest a
modest decline of half a percentage point in median city growth rates from 2000 to
2015. This is about the same as the median projected growth rate decline suggested
by the regression models, although the regression estimates suggest more rapid
growth overall.

The difference in the level of growth rates between the UN forecasts and ours
merits discussion. The key to understanding the difference is this: The UN fore-
casts build in a negative relationship between city size and city growth rates, whereas
in the regression models of Table 1, the forecasted decline in city growth is wholly
attributable to declines in future fertility and mortality. (The mortality effect by
itself would imply rising rates of city growth as child death rates fall, but in our
models these mortality effects are overwhelmed by the effects of falling fertility.)
In the next section, we will show that the addition of a city size variable to our
econometric models draws our growth rate forecasts closer into line with those of
the UN.

5 Models and forecasts with lagged city population size

Having shown what can be achieved in a stripped-down growth model contain-
ing no city-specific explanatory variables, we now introduce such a variable—city
population size, lagged—into the city growth rate specification and explore the
implications of this expanded model. Recall that the model with city size as a
covariate is specified as

gi,t = α0 +α1Pi,t−1 +βTFRt +δqt + vi,t .

with Pi,t−1 being the lagged value of city i’s population. We again write the dis-
turbance term as vi,t = ui + εi,t , but note that a random-effects specification is not
appropriate in this case. The reason is that Pi,t−1 is in part the product of the growth
rates for city i that were in force in earlier years, and because of this Pi,t−1 can be
likened to a lagged dependent variable that is correlated with the ui component
of the disturbance. A large and growing literature in econometrics explores the
estimation techniques appropriate to this situation, which include variants of the
fixed-effect estimation strategy and the use of instrumental variables (e.g., Arel-
lano and Bond, 1991).

To indicate the role of city size in determining the growth rate, Table 4 presents
estimates of an ordinary least squares model and a fixed-effects model with lagged
city size included as a covariate along with the total fertility rate and the child
mortality rate. These results reconfirm what was seen before, that the TFR has a
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Table 4: Growth Regression Models with Lagged
City Size, All Cities. (Asymptotic Z-statistics in
parentheses)

OLS Fixed Effect
Total Fertility Rate 0.578 0.839
(Z statistic) (19.05) (16.62)
Child Mortality Rate -0.004 -0.007

(-5.35) (-5.02)
Lagged City Sizea -0.000200 -0.000477

(-6.24) (-6.76)
Constant 1.917 1.256

(22.92) (9.73)
σu 1.906
σε 2.656 2.371
log-likelihood -18605 -16537
a Measured in thousands of residents.

strong association with city growth and the child mortality rate a weaker but (in this
pooled regression) statistically significant influence. Lagged city size (measured
here in terms of thousands of residents) also achieves statistical significance in
these regressions.

With lagged city size in the model, forecasts of city growth must be made
recursively. The growth rate forecast g̃i,t for period t to t +1 implies a forecast for
city i’s population size as of time t + 1, or P̃i,t+1, which then goes on to influence
the growth rate g̃i,t+1 forecast for the period t + 1 to t + 2. Using the fixed-effects
estimates from Table 4, together with the estimated effect ûi for each city, we have
generated such recursive forecasts for the cities in our database.

The results are shown in Figure 9, with the UN forecasts re-displayed in Figure
8 to facilitate comparison. (Note again that the UN forecasts are made to 2015,
whereas our growth forecasts extend to 2045.) These forecasts are much closer
to the UN’s forecasts in the level of the projected growth rate, and owing to the
inclusion of a negative city size feedback effect, they decline more steeply with the
passage of time than did our earlier forecasts, which were made without consider-
ation of city size. Region-specific summaries of our forecasts (not shown) suggest
decreases in the median city growth rate of about 2 percentage points in Africa over
the full span of the projection, and declines on the order of 0.5 percentage points
for the other regions.

In short, we have demonstrated that it is a simple matter to reconcile the main
features of our city growth forecasts with those of the United Nations, by introduc-
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Figure 7: United Nations city growth rate forecasts to 2015. Median growth rates
shown.
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Figure 8: City growth rate forecasts from the fixed-effects regressions including
lagged city size as a covariate, to 2045. Median growth rates shown.
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ing lagged city size into the specifications. To be sure, it is not at all obvious that
reconciliation of these forecasts should be our aim. Too much doubt has been cast
on the validity of the UN forecasts to adopt them, uncritically, as the standard of
comparison.

6 Next steps

The analyses and forecasts presented here are meant to clarify and illustrate some
of the main methods described in the research proposal. Using national rather than
the preferred urban data on total fertility rates and child mortality, we have un-
covered strong evidence supporting the use of total fertility rates in econometric
models of city growth and the forecasts based on these models. The findings on
child mortality are less robust, but they also invite further analysis. As we have
seen, statistical models incorporating lagged city size—which has been a key fea-
ture of the UN city projection methods—clearly merit consideration in our future
work.

The result of the fixed-effect models are especially striking, given that such
models include a great number of city-specific dummy variables (whose effects are
expressed in the ûi) and yet exhibit large and statistically significant TFR coeffi-
cients. But the results are, of course, highly preliminary. As already mentioned,
the results shown here are based not on the preferred urban estimates of the total
fertility rate and child mortality, but rather on national estimates of fertility and
mortality. Much remains to be done to assess the nature and extent of measure-
ment error in the city population series. More attention needs to be paid to regional
and country differences in the coefficients. We intend to revisit questions of the
robustness of the estimates, their vulnerability to measurement error, and possible
region-specific variation in coefficient values when the cities database has been
cleaned and vetted, probable errors of measurement have been identified, and a full
set of urban fertility, mortality, and related data are ready to be linked to the city
growth series.

As we have discussed elsewhere, Bayesian estimation and forecasting methods
offer a means of incorporating measurement error via the specification of prior dis-
tributions. These methods hold great promise, but they too will require substantial
preparatory work and additional programming. Additional work will be required to
identify with confidence the spatial coordinates of the cities in the database, which
are necessary inputs in the models of spatial correlation across cities. And as Voss
et al. (2005) argue, when there is reason to suspect that spatial error correlation
exists, models that do not take it into account will likely be biased in terms of co-
efficient standard errors, thus contaminating inference and causing forecast error
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variances to be calculated incorrectly. Even with these limits on our present ef-
forts acknowledged, we believe that the results obtained so far lend a good deal of
support to our general approach.
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